Principal Components Regression in Logistic Model
نویسندگان
چکیده
منابع مشابه
Nonparametric Principal Components Regression
In ordinary least squares regression, dimensionality is a sensitive issue. As the number of independent variables approaches the sample size, the least squares algorithm could easily fail, i.e., estimates are not unique or very unstable, (Draper and Smith, 1981). There are several problems usually encountered in modeling high dimensional data, including the difficulty of visualizing the data, s...
متن کاملRobust Principal Component Functional Logistic Regression
In this paper, we discuss the estimation of the parameter function for a functional logistic regression model in the presence of outliers. We consider ways that allow for the parameter estimator to be resistant to outliers, in addition to minimizing multicollinearity and reducing the high dimensionality which is inherent with functional data. To achieve this, the functional covariates and funct...
متن کاملIn Logistic Regression Model
Logistic regression with binary and multinomial outcomes is commonly used, and researchers have long searched for an interpretable measure of the strength of a particular logistic model. This article describes the large sample properties of some pseudo-R statistics for assessing the predictive strength of the logistic regression model. We present theoretical results regarding the convergence an...
متن کاملMultiple Logistic Regression and Model Fit Multiple Logistic Regression Just as in OLS regression, logistic models
Multiple Logistic Regression Just as in OLS regression, logistic models can include more than one predictor. The analysis options are similar to regression. One can choose to select variables, as with a stepwise procedure, or one can enter the predictors simultaneously, or they can be entered in blocks. Variations of the likelihood ratio test can be conducted in which the chi-square test (G) is...
متن کاملUsing principal components for estimating logistic regression with high-dimensional multicollinear data
The logistic regression model is used to predict a binary response variable in terms of a set of explicative ones. The estimation of the model parameters is not too accurate and their interpretation in terms of odds ratios may be erroneous, when there is multicollinearity (high dependence) among the predictors. Other important problem is the great number of explicative variables usually needed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2008
ISSN: 1225-066X
DOI: 10.5351/kjas.2008.21.4.571